Mutual information in time-varying biochemical systems.

نویسندگان

  • Filipe Tostevin
  • Pieter Rein ten Wolde
چکیده

Cells must continuously sense and respond to time-varying environmental stimuli. These signals are transmitted and processed by biochemical signaling networks. However, the biochemical reactions making up these networks are intrinsically noisy, which limits the reliability of intracellular signaling. Here we use information theory to characterize the reliability of transmission of time-varying signals through elementary biochemical reactions in the presence of noise. We calculate the mutual information for both instantaneous measurements and trajectories of biochemical systems for a Gaussian model. Our results indicate that the same network can have radically different characteristics for the transmission of instantaneous signals and trajectories. For trajectories, the ability of a network to respond to changes in the input signal is determined by the timing of reaction events, and is independent of the correlation time of the output of the network. We also study how reliably signals on different time scales can be transmitted by considering the frequency-dependent coherence and gain-to-noise ratio. We find that a detector that does not consume the ligand molecule upon detection can more reliably transmit slowly varying signals, while an absorbing detector can more reliably transmit rapidly varying signals. Furthermore, we find that while one reaction may more reliably transmit information than another when considered in isolation, when placed within a signaling cascade the relative performance of the two reactions can be reversed. This means that optimizing signal transmission at a single level of a signaling cascade can reduce signaling performance for the cascade as a whole.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutual information between input and output trajectories of biochemical networks.

Biochemical networks can respond to temporal characteristics of time-varying signals. To understand how reliably biochemical networks can transmit information we must consider how an input signal as a function of time--the input trajectory--can be mapped onto an output trajectory. Here we estimate the mutual information between input and output trajectories using a Gaussian model. We study how ...

متن کامل

Fractional order robust adaptive intelligent controller design for fractional-order chaotic systems with unknown input delay, uncertainty and external disturbances

In this paper, a fractional-order robust adaptive intelligent controller (FRAIC) is designed for a class of chaotic fractional order systems with uncertainty, external disturbances and unknown time-varying input time delay. The time delay is considered both constant and time varying. Due to changes in the equilibrium point, adaptive control is used to update the system's momentary information a...

متن کامل

Numerical Solution of Optimal Control of Time-varying Singular Systems via Operational Matrices

In this paper, a numerical method for solving the constrained optimal control of time-varying singular systems with quadratic performance index is presented. Presented method is based on Bernste in polynomials. Operational matrices of integration, differentiation and product are introduced and utilized to reduce the optimal control of time-varying singular problems to the solution of algebraic ...

متن کامل

On Classification of Bivariate Distributions Based on Mutual Information

Among all measures of independence between random variables, mutual information is the only one that is based on information theory. Mutual information takes into account of all kinds of dependencies between variables, i.e., both the linear and non-linear dependencies. In this paper we have classified some well-known bivariate distributions into two classes of distributions based on their mutua...

متن کامل

Finite time stabilization of time-delay nonlinear systems with uncertainty and time-varying delay

In this paper, the problem of finite-time stability and finite-time stabilization for a specific class of dynamical systems with nonlinear functions in the presence time-varying delay and norm-bounded uncertainty terms is investigated. Nonlinear functions are considered to satisfy the Lipchitz conditions. At first, sufficient conditions to guarantee the finite-time stability for time-delay nonl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 81 6 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2010